Copied to
clipboard

G = C12.89S32order 432 = 24·33

9th non-split extension by C12 of S32 acting via S32/C3⋊S3=C2

non-abelian, supersoluble, monomial

Aliases: C12.89S32, He34(C2×C8), C322(S3×C8), He33C87C2, He3⋊C23C8, C324C86S3, (C3×C12).37D6, He33C4.4C4, C4.15(C32⋊D6), C6.12(C6.D6), (C4×He3).29C22, C3.2(C12.29D6), (C3×C6).3(C4×S3), C2.1(He3⋊(C2×C4)), (C2×He3).10(C2×C4), (C2×He3⋊C2).2C4, (C4×He3⋊C2).4C2, SmallGroup(432,81)

Series: Derived Chief Lower central Upper central

C1C3He3 — C12.89S32
C1C3C32He3C2×He3C4×He3He33C8 — C12.89S32
He3 — C12.89S32
C1C4

Generators and relations for C12.89S32
 G = < a,b,c,d,e | a3=b3=c3=d2=e8=1, ab=ba, cac-1=ab-1, dad=a-1, ae=ea, bc=cb, bd=db, ebe-1=b-1, dcd=ece-1=c-1, de=ed >

Subgroups: 403 in 93 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, He3, C3×Dic3, C3×C12, C3×C12, S3×C6, S3×C8, C2×C3⋊C8, He3⋊C2, C2×He3, C3×C3⋊C8, C324C8, S3×C12, He33C4, C4×He3, C2×He3⋊C2, S3×C3⋊C8, He33C8, C4×He3⋊C2, C12.89S32
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D6, C2×C8, C4×S3, S32, S3×C8, C6.D6, C32⋊D6, C12.29D6, He3⋊(C2×C4), C12.89S32

Smallest permutation representation of C12.89S32
On 72 points
Generators in S72
(1 68 47)(2 69 48)(3 70 41)(4 71 42)(5 72 43)(6 65 44)(7 66 45)(8 67 46)(9 21 60)(10 22 61)(11 23 62)(12 24 63)(13 17 64)(14 18 57)(15 19 58)(16 20 59)(25 38 55)(26 39 56)(27 40 49)(28 33 50)(29 34 51)(30 35 52)(31 36 53)(32 37 54)
(1 24 31)(2 32 17)(3 18 25)(4 26 19)(5 20 27)(6 28 21)(7 22 29)(8 30 23)(9 44 50)(10 51 45)(11 46 52)(12 53 47)(13 48 54)(14 55 41)(15 42 56)(16 49 43)(33 60 65)(34 66 61)(35 62 67)(36 68 63)(37 64 69)(38 70 57)(39 58 71)(40 72 59)
(9 50 44)(10 45 51)(11 52 46)(12 47 53)(13 54 48)(14 41 55)(15 56 42)(16 43 49)(33 60 65)(34 66 61)(35 62 67)(36 68 63)(37 64 69)(38 70 57)(39 58 71)(40 72 59)
(9 60)(10 61)(11 62)(12 63)(13 64)(14 57)(15 58)(16 59)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 49)(41 70)(42 71)(43 72)(44 65)(45 66)(46 67)(47 68)(48 69)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)

G:=sub<Sym(72)| (1,68,47)(2,69,48)(3,70,41)(4,71,42)(5,72,43)(6,65,44)(7,66,45)(8,67,46)(9,21,60)(10,22,61)(11,23,62)(12,24,63)(13,17,64)(14,18,57)(15,19,58)(16,20,59)(25,38,55)(26,39,56)(27,40,49)(28,33,50)(29,34,51)(30,35,52)(31,36,53)(32,37,54), (1,24,31)(2,32,17)(3,18,25)(4,26,19)(5,20,27)(6,28,21)(7,22,29)(8,30,23)(9,44,50)(10,51,45)(11,46,52)(12,53,47)(13,48,54)(14,55,41)(15,42,56)(16,49,43)(33,60,65)(34,66,61)(35,62,67)(36,68,63)(37,64,69)(38,70,57)(39,58,71)(40,72,59), (9,50,44)(10,45,51)(11,52,46)(12,47,53)(13,54,48)(14,41,55)(15,56,42)(16,43,49)(33,60,65)(34,66,61)(35,62,67)(36,68,63)(37,64,69)(38,70,57)(39,58,71)(40,72,59), (9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49)(41,70)(42,71)(43,72)(44,65)(45,66)(46,67)(47,68)(48,69), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;

G:=Group( (1,68,47)(2,69,48)(3,70,41)(4,71,42)(5,72,43)(6,65,44)(7,66,45)(8,67,46)(9,21,60)(10,22,61)(11,23,62)(12,24,63)(13,17,64)(14,18,57)(15,19,58)(16,20,59)(25,38,55)(26,39,56)(27,40,49)(28,33,50)(29,34,51)(30,35,52)(31,36,53)(32,37,54), (1,24,31)(2,32,17)(3,18,25)(4,26,19)(5,20,27)(6,28,21)(7,22,29)(8,30,23)(9,44,50)(10,51,45)(11,46,52)(12,53,47)(13,48,54)(14,55,41)(15,42,56)(16,49,43)(33,60,65)(34,66,61)(35,62,67)(36,68,63)(37,64,69)(38,70,57)(39,58,71)(40,72,59), (9,50,44)(10,45,51)(11,52,46)(12,47,53)(13,54,48)(14,41,55)(15,56,42)(16,43,49)(33,60,65)(34,66,61)(35,62,67)(36,68,63)(37,64,69)(38,70,57)(39,58,71)(40,72,59), (9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49)(41,70)(42,71)(43,72)(44,65)(45,66)(46,67)(47,68)(48,69), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );

G=PermutationGroup([[(1,68,47),(2,69,48),(3,70,41),(4,71,42),(5,72,43),(6,65,44),(7,66,45),(8,67,46),(9,21,60),(10,22,61),(11,23,62),(12,24,63),(13,17,64),(14,18,57),(15,19,58),(16,20,59),(25,38,55),(26,39,56),(27,40,49),(28,33,50),(29,34,51),(30,35,52),(31,36,53),(32,37,54)], [(1,24,31),(2,32,17),(3,18,25),(4,26,19),(5,20,27),(6,28,21),(7,22,29),(8,30,23),(9,44,50),(10,51,45),(11,46,52),(12,53,47),(13,48,54),(14,55,41),(15,42,56),(16,49,43),(33,60,65),(34,66,61),(35,62,67),(36,68,63),(37,64,69),(38,70,57),(39,58,71),(40,72,59)], [(9,50,44),(10,45,51),(11,52,46),(12,47,53),(13,54,48),(14,41,55),(15,56,42),(16,43,49),(33,60,65),(34,66,61),(35,62,67),(36,68,63),(37,64,69),(38,70,57),(39,58,71),(40,72,59)], [(9,60),(10,61),(11,62),(12,63),(13,64),(14,57),(15,58),(16,59),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,49),(41,70),(42,71),(43,72),(44,65),(45,66),(46,67),(47,68),(48,69)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])

44 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B4C4D6A6B6C6D6E6F8A···8H12A12B12C12D12E12F12G12H12I12J24A···24H
order1222333344446666668···81212121212121212121224···24
size11992661211992661218189···92266661212181818···18

44 irreducible representations

dim1111112222444666
type++++++++-
imageC1C2C2C4C4C8S3D6C4×S3S3×C8S32C6.D6C12.29D6C32⋊D6He3⋊(C2×C4)C12.89S32
kernelC12.89S32He33C8C4×He3⋊C2He33C4C2×He3⋊C2He3⋊C2C324C8C3×C12C3×C6C32C12C6C3C4C2C1
# reps1212282248112224

Matrix representation of C12.89S32 in GL10(𝔽73)

0010000000
0001000000
720720000000
072072000000
0000001000
0000000100
0000000010
0000000001
0000100000
0000010000
,
1000000000
0100000000
0010000000
0001000000
00007210000
00007200000
00000072100
00000072000
00000000721
00000000720
,
07200000000
17200000000
00072000000
00172000000
0000100000
0000010000
00000007200
00000017200
00000000721
00000000720
,
0100000000
1000000000
072072000000
720720000000
0000100000
0000010000
0000000010
0000000001
0000001000
0000000100
,
05100000000
51000000000
00051000000
00510000000
000043430000
000013300000
000000434300
000000133000
000000004343
000000001330

G:=sub<GL(10,GF(73))| [0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0],[0,1,0,72,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[0,51,0,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,0,0,0,0,43,13,0,0,0,0,0,0,0,0,43,30,0,0,0,0,0,0,0,0,0,0,43,13,0,0,0,0,0,0,0,0,43,30,0,0,0,0,0,0,0,0,0,0,43,13,0,0,0,0,0,0,0,0,43,30] >;

C12.89S32 in GAP, Magma, Sage, TeX

C_{12}._{89}S_3^2
% in TeX

G:=Group("C12.89S3^2");
// GroupNames label

G:=SmallGroup(432,81);
// by ID

G=gap.SmallGroup(432,81);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,36,58,571,4037,537,14118,7069]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^2=e^8=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d=a^-1,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,d*c*d=e*c*e^-1=c^-1,d*e=e*d>;
// generators/relations

׿
×
𝔽