non-abelian, supersoluble, monomial
Aliases: C12.89S32, He3⋊4(C2×C8), C32⋊2(S3×C8), He3⋊3C8⋊7C2, He3⋊C2⋊3C8, C32⋊4C8⋊6S3, (C3×C12).37D6, He3⋊3C4.4C4, C4.15(C32⋊D6), C6.12(C6.D6), (C4×He3).29C22, C3.2(C12.29D6), (C3×C6).3(C4×S3), C2.1(He3⋊(C2×C4)), (C2×He3).10(C2×C4), (C2×He3⋊C2).2C4, (C4×He3⋊C2).4C2, SmallGroup(432,81)
Series: Derived ►Chief ►Lower central ►Upper central
He3 — C12.89S32 |
Generators and relations for C12.89S32
G = < a,b,c,d,e | a3=b3=c3=d2=e8=1, ab=ba, cac-1=ab-1, dad=a-1, ae=ea, bc=cb, bd=db, ebe-1=b-1, dcd=ece-1=c-1, de=ed >
Subgroups: 403 in 93 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, C32, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, C3×S3, C3×C6, C3×C6, C3⋊C8, C24, C4×S3, C2×C12, He3, C3×Dic3, C3×C12, C3×C12, S3×C6, S3×C8, C2×C3⋊C8, He3⋊C2, C2×He3, C3×C3⋊C8, C32⋊4C8, S3×C12, He3⋊3C4, C4×He3, C2×He3⋊C2, S3×C3⋊C8, He3⋊3C8, C4×He3⋊C2, C12.89S32
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D6, C2×C8, C4×S3, S32, S3×C8, C6.D6, C32⋊D6, C12.29D6, He3⋊(C2×C4), C12.89S32
(1 68 47)(2 69 48)(3 70 41)(4 71 42)(5 72 43)(6 65 44)(7 66 45)(8 67 46)(9 21 60)(10 22 61)(11 23 62)(12 24 63)(13 17 64)(14 18 57)(15 19 58)(16 20 59)(25 38 55)(26 39 56)(27 40 49)(28 33 50)(29 34 51)(30 35 52)(31 36 53)(32 37 54)
(1 24 31)(2 32 17)(3 18 25)(4 26 19)(5 20 27)(6 28 21)(7 22 29)(8 30 23)(9 44 50)(10 51 45)(11 46 52)(12 53 47)(13 48 54)(14 55 41)(15 42 56)(16 49 43)(33 60 65)(34 66 61)(35 62 67)(36 68 63)(37 64 69)(38 70 57)(39 58 71)(40 72 59)
(9 50 44)(10 45 51)(11 52 46)(12 47 53)(13 54 48)(14 41 55)(15 56 42)(16 43 49)(33 60 65)(34 66 61)(35 62 67)(36 68 63)(37 64 69)(38 70 57)(39 58 71)(40 72 59)
(9 60)(10 61)(11 62)(12 63)(13 64)(14 57)(15 58)(16 59)(33 50)(34 51)(35 52)(36 53)(37 54)(38 55)(39 56)(40 49)(41 70)(42 71)(43 72)(44 65)(45 66)(46 67)(47 68)(48 69)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)
G:=sub<Sym(72)| (1,68,47)(2,69,48)(3,70,41)(4,71,42)(5,72,43)(6,65,44)(7,66,45)(8,67,46)(9,21,60)(10,22,61)(11,23,62)(12,24,63)(13,17,64)(14,18,57)(15,19,58)(16,20,59)(25,38,55)(26,39,56)(27,40,49)(28,33,50)(29,34,51)(30,35,52)(31,36,53)(32,37,54), (1,24,31)(2,32,17)(3,18,25)(4,26,19)(5,20,27)(6,28,21)(7,22,29)(8,30,23)(9,44,50)(10,51,45)(11,46,52)(12,53,47)(13,48,54)(14,55,41)(15,42,56)(16,49,43)(33,60,65)(34,66,61)(35,62,67)(36,68,63)(37,64,69)(38,70,57)(39,58,71)(40,72,59), (9,50,44)(10,45,51)(11,52,46)(12,47,53)(13,54,48)(14,41,55)(15,56,42)(16,43,49)(33,60,65)(34,66,61)(35,62,67)(36,68,63)(37,64,69)(38,70,57)(39,58,71)(40,72,59), (9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49)(41,70)(42,71)(43,72)(44,65)(45,66)(46,67)(47,68)(48,69), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)>;
G:=Group( (1,68,47)(2,69,48)(3,70,41)(4,71,42)(5,72,43)(6,65,44)(7,66,45)(8,67,46)(9,21,60)(10,22,61)(11,23,62)(12,24,63)(13,17,64)(14,18,57)(15,19,58)(16,20,59)(25,38,55)(26,39,56)(27,40,49)(28,33,50)(29,34,51)(30,35,52)(31,36,53)(32,37,54), (1,24,31)(2,32,17)(3,18,25)(4,26,19)(5,20,27)(6,28,21)(7,22,29)(8,30,23)(9,44,50)(10,51,45)(11,46,52)(12,53,47)(13,48,54)(14,55,41)(15,42,56)(16,49,43)(33,60,65)(34,66,61)(35,62,67)(36,68,63)(37,64,69)(38,70,57)(39,58,71)(40,72,59), (9,50,44)(10,45,51)(11,52,46)(12,47,53)(13,54,48)(14,41,55)(15,56,42)(16,43,49)(33,60,65)(34,66,61)(35,62,67)(36,68,63)(37,64,69)(38,70,57)(39,58,71)(40,72,59), (9,60)(10,61)(11,62)(12,63)(13,64)(14,57)(15,58)(16,59)(33,50)(34,51)(35,52)(36,53)(37,54)(38,55)(39,56)(40,49)(41,70)(42,71)(43,72)(44,65)(45,66)(46,67)(47,68)(48,69), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72) );
G=PermutationGroup([[(1,68,47),(2,69,48),(3,70,41),(4,71,42),(5,72,43),(6,65,44),(7,66,45),(8,67,46),(9,21,60),(10,22,61),(11,23,62),(12,24,63),(13,17,64),(14,18,57),(15,19,58),(16,20,59),(25,38,55),(26,39,56),(27,40,49),(28,33,50),(29,34,51),(30,35,52),(31,36,53),(32,37,54)], [(1,24,31),(2,32,17),(3,18,25),(4,26,19),(5,20,27),(6,28,21),(7,22,29),(8,30,23),(9,44,50),(10,51,45),(11,46,52),(12,53,47),(13,48,54),(14,55,41),(15,42,56),(16,49,43),(33,60,65),(34,66,61),(35,62,67),(36,68,63),(37,64,69),(38,70,57),(39,58,71),(40,72,59)], [(9,50,44),(10,45,51),(11,52,46),(12,47,53),(13,54,48),(14,41,55),(15,56,42),(16,43,49),(33,60,65),(34,66,61),(35,62,67),(36,68,63),(37,64,69),(38,70,57),(39,58,71),(40,72,59)], [(9,60),(10,61),(11,62),(12,63),(13,64),(14,57),(15,58),(16,59),(33,50),(34,51),(35,52),(36,53),(37,54),(38,55),(39,56),(40,49),(41,70),(42,71),(43,72),(44,65),(45,66),(46,67),(47,68),(48,69)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 4D | 6A | 6B | 6C | 6D | 6E | 6F | 8A | ··· | 8H | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | ··· | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 9 | 9 | 2 | 6 | 6 | 12 | 1 | 1 | 9 | 9 | 2 | 6 | 6 | 12 | 18 | 18 | 9 | ··· | 9 | 2 | 2 | 6 | 6 | 6 | 6 | 12 | 12 | 18 | 18 | 18 | ··· | 18 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | - | |||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | S3 | D6 | C4×S3 | S3×C8 | S32 | C6.D6 | C12.29D6 | C32⋊D6 | He3⋊(C2×C4) | C12.89S32 |
kernel | C12.89S32 | He3⋊3C8 | C4×He3⋊C2 | He3⋊3C4 | C2×He3⋊C2 | He3⋊C2 | C32⋊4C8 | C3×C12 | C3×C6 | C32 | C12 | C6 | C3 | C4 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 2 | 8 | 2 | 2 | 4 | 8 | 1 | 1 | 2 | 2 | 2 | 4 |
Matrix representation of C12.89S32 ►in GL10(𝔽73)
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 |
72 | 0 | 72 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 51 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 43 | 43 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 30 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 43 | 43 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 13 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 43 | 43 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 | 30 |
G:=sub<GL(10,GF(73))| [0,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0],[0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,1,0],[0,1,0,72,0,0,0,0,0,0,1,0,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0],[0,51,0,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,0,51,0,0,0,0,0,0,0,0,0,0,0,43,13,0,0,0,0,0,0,0,0,43,30,0,0,0,0,0,0,0,0,0,0,43,13,0,0,0,0,0,0,0,0,43,30,0,0,0,0,0,0,0,0,0,0,43,13,0,0,0,0,0,0,0,0,43,30] >;
C12.89S32 in GAP, Magma, Sage, TeX
C_{12}._{89}S_3^2
% in TeX
G:=Group("C12.89S3^2");
// GroupNames label
G:=SmallGroup(432,81);
// by ID
G=gap.SmallGroup(432,81);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,36,58,571,4037,537,14118,7069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^2=e^8=1,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d=a^-1,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,d*c*d=e*c*e^-1=c^-1,d*e=e*d>;
// generators/relations